Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Natl Med J India ; 35(4): 221-228, 2022.
Article in English | MEDLINE | ID: covidwho-2226593

ABSTRACT

Background Mortality due to Covid-19 and severe community-acquired pneumonia (CAP) remains high, despite progress in critical care management. We compared the precision of CURB-65 score with monocyte-to-lymphocyte ratio (MLR), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) in prediction of mortality among patients with Covid-19 and CAP presenting to the emergency department. Methods We retrospectively analysed two cohorts of patients admitted to the emergency department of Canakkale University Hospital, namely (i) Covid-19 patients with severe acute respiratory symptoms presenting between 23 March 2020 and 31 October 2020, and (ii) all patients with CAP either from bacterial or viral infection within the 36 months preceding the Covid-19 pandemic. Mortality was defined as in-hospital death or death occurring within 30 days after discharge. Results The first study group consisted of 324 Covid-19 patients and the second group of 257 CAP patients. The non-survivor Covid-19 group had significantly higher MLR, NLR and PLR values. In univariate analysis, in Covid-19 patients, a 1-unit increase in NLR and PLR was associated with increased mortality, and in multivariate analysis for Covid-19 patients, age and NLR remained significant in the final step of the model. According to this model, we found that in the Covid-19 group an increase in 1-unit in NLR would result in an increase by 5% and 7% in the probability of mortality, respectively. According to pairwise analysis, NLR and PLR are as reliable as CURB-65 in predicting mortality in Covid-19. Conclusions Our study indicates that NLR and PLR may serve as reliable predictive factors as CURB-65 in Covid-19 pneumonia, which could easily be used to triage and manage severe patients in the emergency department.


Subject(s)
COVID-19 , Pneumonia , Humans , COVID-19/diagnosis , Retrospective Studies , Hospital Mortality , Pandemics , Prognosis
2.
J Intensive Care Med ; 37(12): 1614-1624, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2098205

ABSTRACT

Introduction: The appraisal of disease severity and prediction of adverse outcomes using risk stratification tools at early disease stages is crucial to diminish mortality from coronavirus disease 2019 (COVID-19). While lung ultrasound (LUS) as an imaging technique for the diagnosis of lung diseases has recently gained a leading position, data demonstrating that it can predict adverse outcomes related to COVID-19 is scarce. The main aim of this study is therefore to assess the clinical significance of bedside LUS in COVID-19 patients who presented to the emergency department (ED). Methods: Patients with a confirmed diagnosis of SARS-CoV-2 pneumonia admitted to the ED of our hospital between March 2021 and May 2021 and who underwent a 12-zone LUS and a lung computed tomography scan were included prospectively. Logistic regression and Cox proportional hazard models were used to predict adverse events, which was our primary outcome. The secondary outcome was to discover the association of LUS score and computed tomography severity score (CT-SS) with the composite endpoints. Results: We assessed 234 patients [median age 59.0 (46.8-68.0) years; 59.4% M), including 38 (16.2%) in-hospital deaths for any cause related to COVID-19. Higher LUS score and CT-SS was found to be associated with ICU admission, intubation, and mortality. The LUS score predicted mortality risk within each stratum of NEWS. Pairwise analysis demonstrated that after adjusting a base prediction model with LUS score, significantly higher accuracy was observed in predicting both ICU admission (DBA -0.067, P = .011) and in-hospital mortality (DBA -0.086, P = .017). Conclusion: Lung ultrasound can be a practical prediction tool during the course of COVID-19 and can quantify pulmonary involvement in ED settings. It is a powerful predictor of ICU admission, intubation, and mortality and can be used as an alternative for chest computed tomography while monitoring COVID-19-related adverse outcomes.


Subject(s)
COVID-19 , Humans , Middle Aged , COVID-19/complications , COVID-19/diagnostic imaging , SARS-CoV-2 , Point-of-Care Systems , Lung/diagnostic imaging , Ultrasonography/methods , Tomography, X-Ray Computed
3.
Am J Emerg Med ; 50: 546-552, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1384839

ABSTRACT

INTRODUCTION: The assessment of disease severity and the prediction of clinical outcomes at early disease stages can contribute to decreased mortality in patients with Coronavirus disease 2019 (COVID-19). This study was conducted to develop and validate a multivariable risk prediction model for mortality with using a combination of computed tomography severity score (CT-SS), national early warning score (NEWS), and quick sequential (sepsis-related) organ failure assessment (qSOFA) in COVID-19 patients. METHODS: We retrospectively collected medical data from 655 adult COVID-19 patients admitted to our hospital between July and November 2020. Data on demographics, clinical characteristics, and laboratory and radiological findings measured as part of standard care at admission were used to calculate NEWS, qSOFA score, CT-SS, peripheral perfusion index (PPI) and shock index (SI). Logistic regression and Cox proportional hazard models were used to predict mortality, which was our primary outcome. The predictive accuracy of distinct scoring systems was evaluated by the receiver-operating characteristic (ROC) curve analysis. RESULTS: The median age was 50.0 years [333 males (50.8%), 322 females (49.2%)]. Higher NEWS and SI was associated with time-to-death within 90-days, whereas higher age, CT-SS and lower PPI were significantly associated with time-to-death within both 14 days and 90 days in the adjusted Cox regression model. The CT-SS predicted different mortality risk levels within each stratum of NEWS and qSOFA and improved the discrimination of mortality prediction models. Combining CT-SS with NEWS score yielded more accurate 14 days (DBA: -0.048, p = 0.002) and 90 days (DBA: -0.066, p < 0.001) mortality prediction. CONCLUSION: Combining severity tools such as CT-SS, NEWS and qSOFA improves the accuracy of predicting mortality in patients with COVID-19. Inclusion of these tools in decision strategies might provide early detection of high-risk groups, avoid delayed medical attention, and improve patient outcomes.


Subject(s)
COVID-19/diagnosis , COVID-19/mortality , Organ Dysfunction Scores , Perfusion Index , Severity of Illness Index , Tomography, X-Ray Computed , Adult , COVID-19/physiopathology , Emergency Service, Hospital , Female , Hemodynamics , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , ROC Curve , Retrospective Studies , Sepsis , Survival Rate , Turkey
4.
Med Hypotheses ; 143: 110150, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-688720

ABSTRACT

COVID-19 due to the SARS-CoV-2 infection is a multi-systemic immune syndrome affecting mainly the lungs, oropharyngeal region, and other vascular endothelial beds. There are tremendous ongoing efforts for the aim of developing drugs against the COVID-19 syndrome-associated inflammation. However, currently no specific medicine is present for the absolute pharmacological cure of COVID-19 mucositis. The re-purposing/re-positioning of already existing drugs is a very important strategy for the management of ongoing pandemy since the development of a new drug needs decades. Apart from altering angiotensin signaling pathways, novel drug candidates for re-purposing comprise medications shall target COVID-19 pathobiology, including pharmaceutical formulations that antagonize proteinase-activated receptors (PARs), mainly PAR-1. Activation of the PAR-1, mediators and hormones impact on the hemostasis, endothelial activation, alveolar epithelial cells and mucosal inflammatory responses which are the essentials of the COVID-19 pathophysiology. In this context, Ankaferd hemostat (Ankaferd Blood Stopper, ABS) which is an already approved hemostatic agent affecting via vital erythroid aggregation and fibrinogen gamma could be a potential topical remedy for the mucosal management of COVID-19. ABS is a clinically safe and effective topical hemostatic agent of plant origin capable of exerting pleiotropic effects on the endothelial cells, angiogenesis, cell proliferation and vascular dynamics. ABS had been approved as a topically applied hemostatic agent for the management of post-surgical/dental bleedings and healing of infected inflammatory mucosal wounds. The anti-inflammatory and proteinase-activated receptor axis properties of ABS with a considerable amount of oestrogenic hormone presence highlight this unique topical hemostatic drug regarding the clinical re-positioning for COVID-19-associated mucositis. Topical ABS as a biological response modifier may lessen SARS-CoV-2 associated microthrombosis, endothelial dysfunction, oropharyngeal inflammation and mucosal lung damage. Moreover, PAR-1 inhibition ability of ABS might be helpful for reducing the initial virus propagation and mocasal spread of COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/complications , Estrogens/physiology , Hemostatics/therapeutic use , Mucositis/drug therapy , Pandemics , Phytoestrogens/therapeutic use , Phytotherapy , Plant Extracts/therapeutic use , Pneumonia, Viral/complications , Receptor, PAR-1/antagonists & inhibitors , Administration, Topical , Age Distribution , Anti-Inflammatory Agents/administration & dosage , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/physiopathology , Drug Repositioning , Endothelium, Vascular/drug effects , Estrogens/agonists , Hemostatics/administration & dosage , Humans , Mucositis/etiology , Phytoestrogens/administration & dosage , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Pneumonia, Viral/blood , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Receptor, PAR-1/physiology , SARS-CoV-2 , Stomatitis/drug therapy , Stomatitis/etiology , Thrombophilia/blood , Thrombophilia/etiology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL